

Series Z1XYW/C

SET~1

प्रश्न-पत्र कोड Q.P. Code 31/C/1

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्भित पृष्ठ 27 हैं।

- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 39 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 27 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 39 questions.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

विज्ञान SCIENCE

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 80

Time allowed: 3 hours

Maximum Marks: 80

31/C/1

→1 →

P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पिढ़ए और उनका सख़ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में कुल **39** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित किया गया है **क, ख, ग, घ** एवं **ङ**।
- (iii) खण्ड क प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का है ।
- (iv) खण्ड ख प्रश्न संख्या 21 से 26 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है। इन प्रश्नों के उत्तर 30 से 50 शब्दों में दिए जाने चाहिए।
- (v) **खण्ड ग** प्रश्न संख्या **27** से **33** तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **3** अंकों का है । इन प्रश्नों के उत्तर 50 से 80 शब्दों में दिए जाने चाहिए ।
- (vi) **खण्ड घ** प्रश्न संख्या **34** से **36** तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **5** अंकों का है । इन प्रश्नों के उत्तर 80 से 120 शब्दों में दिए जाने चाहिए ।
- (vii) खण्ड ङ प्रश्न संख्या 37 से 39 तक 3 स्रोत-आधारित/प्रकरण-आधारित इकाइयों के मूल्यांकन के चार-चार अंकों के प्रश्न (उप-प्रश्नों सहित) हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है । यद्यपि, कुछ खण्डों में आंतरिक विकल्प दिए गए हैं । इस प्रकार के प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए ।

खण्ड क

इस खण्ड में **20** बहुविकल्पीय प्रश्न (प्र. सं. 1 – 20) हैं। **सभी** प्रश्न **अनिवार्य** हैं।

20×1=20

- 1. जल के विद्युत-अपघटन में यदि एनोड पर एकत्रित गैस का द्रव्यमान m_a और कैथोड पर एकत्रित गैस का द्रव्यमान m_c है, तो (m_c/m_a) का मान होगा :
 - (a) 8

(b) 16

(c) $\frac{1}{16}$

(d) $\frac{1}{8}$

31/C/1

***** 2 *****

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises **39** questions. **All** questions are compulsory.
- (ii) This question paper is divided into **five** sections -A, B, C, D and E.
- (iii) Section A Questions No. 1 to 20 are multiple choice questions. Each question carries 1 mark.
- (iv) **Section B** Questions No. **21** to **26** are very short answer type questions. Each question carries **2** marks. Answer to these questions should be in the range of 30 to 50 words.
- (v) **Section** C Questions No. **27** to **33** are short answer type questions. Each question carries **3** marks. Answer to these questions should in the range of 50 to 80 words.
- (vi) **Section D** Questions No. **34** to **36** are long answer type questions. Each question carries **5** marks. Answer to these questions should be in the range of 80 to 120 words.
- (vii) Section E Questions No. 37 to 39 are of 3 source-based/case-based units of assessment carrying 4 marks each with sub-parts.
- (viii) There is no overall choice. However, an internal choice has been provided in some sections. Only one of the alternatives has to be attempted in such questions.

SECTION A

This section has **20** multiple choice questions (Q.No. 1 – 20). **All** questions are compulsory.

- 1. In the electrolysis of water, if the mass of the gas collected at the anode is m_a and the mass of the gas collected at the cathode is m_c , the value of (m_c/m_a) is:
 - (a) 8

(b) 16

(c) $\frac{1}{16}$

(d) $\frac{1}{8}$

2.	नीचे वि	ए गए पदार्थों पर विचार कीजिए :
	(i)	अम्लीकृत $ m K_2Cr_2O_7$
	(ii)	क्षारीय KMnO_4
	(iii)	ऑक्सीजन
	(iv)	हाइड्रोजन
	इनमें से	सामान्यत: उपयोग किए जाने वाले ऑक्सीकारक (उपचायी एजेन्ट) हैं:
	(a)	केवल (i) और (ii)
	(b)	केवल (ii) और (iii)
	(c)	(i), (ii) और (iii)
	(d)	(i), (ii) और (iv)
3.	निम्नलि	ाखित में से उस यौगिक को चुनिए जो क्षारक <i>नहीं</i> है :
	(a)	सोडियम हाइड्रॉक्साइड
	(b)	कैल्सियम हाइड्रॉक्साइड
	(c)	सोडियम सल्फेट
	(d)	ज़िंक ऑक्साइड
4.	परखनत का पर्र	ले सल्फर पाउडर को किसी चायना डिश में जलाया गया और निकले धुएँ को एक ती में एकत्र किया गया । इस परखनली में जल डाला गया और इस प्रकार बने विलयन क्षिण पृथक-पृथक रूप से नीले और लाल लिटमस पत्रों के साथ किया गया । सही । चुनिए :
	(a)	नीला लिटमस नीला रहता है और लाल लिटमस नीला हो जाता है।
	(b)	नीला लिटमस लाल हो जाता है और लाल लिटमस लाल ही रहता है।
	(c)	नीला लिटमस लाल हो जाता है और लाल लिटमस नीला हो जाता है।
	(d)	नीला लिटमस नीला ही रहता है और लाल लिटमस लाल ही रहता है।
5.	नीचे दी	गई कौन-सी एक धातु आघातवर्ध्य है और विद्युत की कुचालक है ?
	(a)	कॉपर (b) ज़िंक
	(c)	लैड (d) सिल्वर
31/C	:/1	*4*

Z.	Cons	sider the following sui	ostances :		
	(i)	Acidified $K_2Cr_2O_7$			
	(ii)	Alkaline ${\rm KMnO_4}$			
	(iii)	Oxygen			
	(iv)	Hydrogen			
	Out	of these, the common	ly used oxidising	agents are:	
	(a)	(i) and (ii) only			
	(b)	(ii) and (iii) only			
	(c)	(i), (ii) and (iii)			
	(d)	(i), (ii) and (iv)			
3.	Selec	ct from the following	compounds whic	h is not a base	:
	(a)	Sodium hydroxide			
	(b)	Calcium hydroxide			
	(c)	Sodium sulphate			
	(d)	Zinc oxide			
4.	$2\mathrm{g}$ o	of yellow sulphur pow	der is burnt in	a china dish a	and the fumes are
	colle	cted in a test tube. W	ater is added in	the test tube a	and the solution is
	teste	ed separately with blu	e and red litmus	s paper. The co	prrect option is :
	(a)	Blue litmus remain	s blue and red li	tmus turns bli	ie.
	(b)	Blue litmus turns r	ed and red litmu	ıs remains red	
	(c)	Blue litmus turns r	ed and red litmu	is turns blue.	
	(d)	Blue litmus remain	s blue and red li	tmus remains	red.
5.	Whic	ch one of the followir	ng metals is ma	lleable and a	poor conductor of
	elect	ricity?			
	(a)	Copper	(b)	Zinc	
	(c)	Lead	(d)	Silver	
31/0	C/1		∻ 5 ∻		P.T.O

Get More Learning Materials Here :

			回您数	
6.	आप	जल की कठोरता का परीक्षण करना	चाहते हैं,	परन्तु आपकी प्रयोगशाला में कठोर जल
		_	न यौगिकों व	को शुद्ध जल में घोलकर जल को कठोर
	बनाया	ा जा सकता है ?		
	(i)	सोडियम का हाइड्रोजन कार्बोनेट		
	(ii)	मैग्नीशियम का सल्फेट		
	(iii)	कैल्सियम का क्लोराइड		
	(iv)	सोडियम का कार्बोनेट		
	(a)	(i) और (ii)		
	(b)	(ii) और (iii)		
	(c)	(iii) और (iv)		
	(d)	(i) और (iv)		
7.	नीचे ि	दिया गया कार्बन का कौन-सा एक	गुण कार्बन	के अत्यधिक संख्या में यौगिक बनाने के
	_	उत्तरदायी <i>नहीं</i> है ?		
	(a)	चार संयोजकता		
	(b)	समावयवता		
	(c)	अपररूपता		
	(d)	शृंखलन		
8.	किसी	कोशिका के कोशिका द्रव्य में वायव	त्रीय और अ	वायवीय, दोनों ही श्वसनों में ग्लूकोज के
	विखण	ग्डन के आरम्भ में कौन-सा अणु उत्प	न्न होता है '	?
	(a)	लैक्टिक अम्ल	(b)	एथेनॉल
	(c)	कार्बन डाइऑक्साइड	(d)	पायरूवेट
9.	दिन व	की तुलना में किसी पौधे द्वारा रात्रि	के समय मु	_] क्त होने वाली कार्बन डाइऑक्साइड की
	मात्रा	अधिक होने का कारण यही है कि :		
	(a)	दिन के समय यह उत्पन्न नहीं होर्त	ो है ।	
	(b)	दिन के समय यह पत्तियों में संचिक	त हो जाती है	है ।
	(c)	दिन के समय उत्पन्न कार्बन डाः	इऑक्साइड <i>े</i>	की अधिकांश मात्रा प्रकाश-संश्लेषण में
		उपयोग हो जाती है।		
	(d)	पौधे दिन के समय श्वसन-क्रिया न	नहीं करते हैं	I

*****6 *****

31/C/1

			回版数		
6.	the la			nt hard water is not available is compounds may be dissolved in	
	(i)	Hydrogen Carbonate of Sodiu	ım		
	(ii)	Sulphate of Magnesium			
	(iii)	Chloride of Calcium			
	(iv)	Carbonate of Sodium			
	(a)	(i) and (ii)			
	(b)	(ii) and (iii)			
	(c)	(iii) and (iv)			
	(d)	(i) and (iv)			
7.	Which one of the following properties of Carbon is not responsible for its formation of large number of compounds ?				
	(a)	Tetravalency			
	(b)	Isomerism			
	(c)	Allotropy			
	(d)	Catenation			
8.	break	_	_	produced initially when glucos in aerobic as well as anaerob	
	(a)	Lactic acid	(b)	Ethanol	
	(c)	Carbon dioxide	(d)	Pyruvate	
9.		ompared to daytime, the amous s during night is more because		carbon dioxide released by th	ne
	(a)	It is not produced during day	time.		
	(b)	It is stored in the leaves of pl	ants di	uring daytime.	
	(c)	Major amount of carbon photosynthesis during dayting		de produced is used up fo	or
	(d)	Plants do not respire during	daytim	ne.	
31/0	C/1	→	7 ∻	!	P.T.O.

CLICK HERE

Get More Learning Materials Here :

10.	वह र्ज	वि जिसमें जनककाय में कोई उभार विव	ः तसित हो∙	कर नया जीव बन जाता है, कौन-सा है ?
	(a)	अमीबा	(b)	पैरामीशियम
	(c)	राइज़ोपस	(d)	यीस्ट
11.	${ m F}_1$ सं	3	${ m P}_1$ पीढ़ी	्बौने पौधों (tt) के किसी संकरण में के पौधों का स्वपरागण कराया गया, तो
	(a)	TT:Tt:tt	(b)	TT:tt
	(c)	Tt:tt	(d)	$\mathrm{TT}:\mathrm{Tt}$
12.		केसी बिम्ब को किसी उत्तल लेंस के म्ब की प्रकृति क्या होती है ?	सामने 2	F से परे रखा जाता है, तो बनने वाले
	(a)	वास्तविक, उल्टा, साइज में बिम्ब से	छोटा	
	(b)	वास्तविक, सीधा, साइज में बिम्ब से	बड़ा	
	(c)	आभासी, सीधा, साइज में बिम्ब से ब	ाड़ा	
	(d)	वास्तविक, उल्टा, साइज में बिम्ब से	बड़ा	
13.		वेत प्रकाश का कोई महीन पुन्ज किसी (रंगों) में विभाजित हो जाता है। इस प		के प्रिज़्म से गुज़रता है, तो वह अवयवी को कहते हैं :
	(a)	प्रकाश का विसरण		
	(b)	प्रकाश का पूर्ण परावर्तन		
	(c)	प्रकाश का प्रकीर्णन		
	(d)	प्रकाश का विक्षेपण		
14.	विद्युत	तापन युक्तियों के तापन अवयव को बन	गाने में उ	पयोग होने वाले पदार्थ की :
	(a)	प्रतिरोधकता उच्च और गलनांक उच्च	होना चा	हिए ।
	(b)	प्रतिरोधकता उच्च और गलनांक निम्न	होना च	ाहिए ।
	(c)	प्रतिरोधकता निम्न और गलनांक उच्च	होना च	ाहिए ।
	(d)	प्रतिरोधकता निम्न और गलनांक निम्न	। होना च	गहिए ।
31/0	2/1	*	8 *	

10.		organism in which an outgrow individual is :	th on t	the parent body develops into a
	(a)	Amoeba	(b)	Paramecium
	(c)	Rhizopus	(d)	Yeast
11.	(tt) t	the offsprings of F_1 generation	were a	Γ T) and pure dwarf pea plants ll tall. When F_1 generation was offsprings of F_2 generation will
	(a)	$\mathbf{TT}:\mathbf{Tt}:\mathbf{tt}$	(b)	TT:tt
	(c)	Tt:tt	(d)	$\mathbf{TT}:\mathbf{Tt}$
12.		n an object is placed beyond 2 ge formed is :	F of a	convex lens, the nature of the
	(a)	Real, inverted and diminishe	d	
	(b)	Real, erect and magnified		
	(c)	Virtual, erect and magnified		
	(d)	Real, inverted and magnified		
13.	Whe	n a narrow beam of white light	passes	s through a glass prism it splits
	into	its component colours? This ph	enome	enon is called :
	(a)	Diffusion of light		
	(b)	Total reflection of light		
	(c)	Scattering of light		
	(d)	Dispersion of light		
14.	A ma	aterial used for making heating	eleme	nts of electrical heating devices
	shou	ld have :		
	(a)	High resistivity and high mel	ting po	oint.
	(b)	High resistivity and low melt	ing poi	nt.
	(c)	Low resistivity and high melt	ing poi	int.
	(d)	Low resistivity and low melti	ng poir	nt.

*****9 *****

P.T.O.

31/C/1

- 15. किसी तार का प्रतिरोध निम्नलिखित में से किस पर निर्भर *नहीं* करता है ?
 - (a) तार की लंबाई
 - (b) तार की अनुप्रस्थ-काट का क्षेत्रफल
 - (c) तार की आकृति
 - (d) तार का पदार्थ
- 16. समान परिमाण की धारा प्रवाहित करने पर (i) किसी परिनालिका के भीतर तथा (ii) किसी सीधे चालक के चारों ओर उत्पन्न चुम्बकीय क्षेत्र की आकृतियाँ क्रमश: होती हैं :
 - (a) (i) सीधी, (ii) वृत्ताकार
 - (b) (i) वृत्ताकार, (ii) वृत्ताकार
 - (c) (i) सीधी, (ii) सीधी
 - (d) (i) वृत्ताकार, (ii) सीधी

प्रश्न संख्या 17 से 20 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 17. अभिकथन (A) : रासायनिक अभिक्रिया $Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2NaCl$, में सोडियम क्लोराइड अवक्षेपित होता है ।
 - कारण (R): जब किसी जलीय विलयन में कोई अन्य विलयन मिलाया जाता है, तो कोई अविलेय पदार्थ बनता है जिसे अवक्षेप कहते हैं।

- **15.** The resistance of a wire does *not* depend on its :
 - (a) Length
 - (b) Area of cross-section
 - (c) Shape
 - (d) Material
- 16. The shape of magnetic field lines produced (i) inside a solenoid (ii) around a straight conductor, both carrying current of the same magnitude are, respectively:
 - (a) (i) straight, (ii) circular
 - (b) (i) circular, (ii) circular
 - (c) (i) straight, (ii) straight
 - (d) (i) circular, (ii) straight

For Questions number 17 to 20, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- 17. Assertion (A): In the reaction, $Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2NaCl$, sodium chloride is precipitated.
 - Reason (R): When an aqueous solution is added to another aqueous solution, an insoluble substance is formed, which is called precipitate.

31/C/1

→ 11 →

P.T.O.

- अभिकथन (A): वह हॉर्मोन जिसे एब्सिसिक अम्ल कहते हैं, पादपों में वृद्धि का संदमन 18. करता है।
 - पादपों में ऑक्सिन की भूमिका एब्सिसिक अम्ल की भूमिका के विपरीत कारण (R): होती है।
- अभिकथन (A): मानवों का प्रत्येक लक्षण पैतृक और मातृक दोनों के DNA द्वारा प्रभावित 19. होता है।
 - पिता की तुलना में किसी शिशु में माता के आनुवंशिक पदार्थ का अधिक कारण (R): योगदान होता है।
- अभिकथन (A): वर्षा की फुहार के पश्चात आकाश में प्रतीत होने वाला इन्द्रधनुष श्वेत 20. प्रकाश का कृत्रिम स्पेक्ट्रम होता है।
 - जल की सूक्ष्म बूँदें छोटे प्रिज़्मों की भांति कार्य करती हैं। कारण (R):

खण्ड ख

कोई धातु 'A' ठंडे जल से तीक्ष्णता से अभिक्रिया करता है और निकलने वाली गैस (क) 21. आग पकड़ लेती है। दूसरी अन्य धातु 'B' जब जल में डुबोई जाती है, तो तैरना आरंभ कर देती है। धातु 'C' ठंडे अथवा गर्म जल से कोई अभिक्रिया नहीं करती है, परन्तु भाप से अभिक्रिया करती है। धातु 'D' जल से किसी प्रकार की भी कोई अभिक्रिया नहीं करती है । 'A', 'B', 'C' और 'D' की पहचान कीजिए ।

अथवा

- जब दो यौगिकों सोडियम क्लोराइड और कैल्सियम क्लोराइड को एक-एक करके (ख) सीधे ही किसी बर्नर की ज्वाला पर जलाया जाता है, तो वह ज्वाला को भिन्न रंग प्रदान करते हैं।
 - (1) सोडियम क्लोराइड और (2) कैल्सियम क्लोराइड द्वारा प्रदान किए जाने (i) वाले रंगों के नाम लिखिए।
 - क्या ये यौगिक कार्बनिक विलायकों जैसे केरोसिन अथवा पेट्रोल में घुलनशील (ii) हैं ? अपने उत्तर की पृष्टि कीजिए।
- उन ग्रंथियों के नाम लिखिए जिनके स्नाव शुक्राणुओं में मिलते हैं। इन स्नावों के दो कार्यों की 22. सूची बनाइए।

31/C/1 **→ 12 →**

CLICK HERE

2

2

- 18. Assertion (A): A hormone called abscisic acid inhibits growth in plants.
 - Reason(R): The role of auxins is opposite to that of abscisic acid in plants.
- 19. Assertion (A): Each human trait is influenced by both paternal and maternal DNA.
 - Reason(R): As compared to the father, the mother contributes more amount of genetic material to the child.
- 20. Assertion (A): A rainbow is an artificial spectrum of white light appearing in the sky after a rain shower.
 - Reason(R): The water droplets act like small prisms.

SECTION B

21. (a) A metal 'A' reacts violently with cold water and the gas evolved catches fire. Another metal 'B' when dipped in water starts floating. The metal 'C' does not react either with cold or hot water, but reacts with steam. The metal 'D' does not react with water at all. Identify the metals 'A', 'B', 'C' and 'D'.

OR

- (b) When two compounds namely sodium chloride and calcium chloride are heated directly, one by one on the flame of a burner, they impart different colours to the flame.
 - (i) Name the colour imparted by (1) sodium chloride and (2) calcium chloride.
 - (ii) Are these compounds soluble in organic solvents such as kerosene or petrol? Justify your answer.
- 22. Name the glands which add their secretions to the sperms. List two function of these secretions.

P.T.O. 31/C/1 **→** 13 **→**

CLICK HERE

2

2

2

Get More Learning Materials Here:

23. "मानवों में किसी नवजात शिशु का लिंग पिता पर निर्भर करता है, माता पर निर्भर नहीं करता है।" प्रवाह आरेख की सहायता से इस कथन की पुष्टि कीजिए।

2

24. (क) नीचे दिए गए आँकड़ों के आधार पर किसी गोलीय दर्पण द्वारा बने प्रतिबिम्ब का आवर्धन ज्ञात कीजिए : $u=-20~{
m cm},\,f=-15~{
m cm}$

2

-20 cm, 1 = -15 cm

अथवा

(ख) किसी अवतल दर्पण द्वारा किसी बिम्ब का प्रतिबिम्ब बनना दर्शाने के लिए उस स्थिति में प्रकाश किरण आरेख खींचिए, जिसमें बिम्ब दर्पण के सामने उसके फोकस और वक्रता केन्द्र के बीच स्थित है।

2

25. क्या होगा यदि किसी घरेलू विद्युत परिपथ, जिसका 220~V पर धारा का अनुमतांक 10~A है, उसमें 3~kW; 220~V अनुमतांक की किसी विद्युत भट्टी का प्रचालन किया जाता है ? अपने उत्तर की कारण सहित पुष्टि कीजिए।

2

26. (क) प्लास्टिक के थैलों की तुलना में कपड़े के थैलों का उपयोग करने का एक लाभ लिखिए।

2

(ख) शहरी क्षेत्रों में उत्पन्न ठोस अपशिष्टों के निरापद निपटारे की किन्हीं दो विधियों की सूची बनाइए।

खण्ड ग

27. प्रकाश-संश्लेषण किसे कहते हैं ? उन अंग और अंगकों (कोशिकांगों) के नाम लिखिए जिनमें प्रकाश-संश्लेषण होता है । इस प्रकम में ऑक्सीजन कहाँ से मुक्त होती है ? उन कार्बोहाइड्रेटों का क्या होता है जिनका पादप तुरन्त उपयोग नहीं कर पाते हैं ?

3

- 28. (क) कोई कार्बन यौगिक 'X' सोडियम से अभिक्रिया करने पर हाइड्रोजन मुक्त करता है। यही यौगिक 'X' सांद्र सल्फ्युरिक अम्ल की उपस्थिति में 443 K पर गर्म किए जाने पर कोई असंतृप्त यौगिक बनाता है।
 - (i) 'X' की पहचान कीजिए।
 - (ii) उपर्युक्त अभिक्रियाओं के रासायनिक समीकरण लिखिए तथा दूसरी अभिक्रिया में सांद्र सल्फ्युरिक अम्ल की भूमिका का उल्लेख कीजिए।

3

अथवा

31/C/1

23. "In human beings, the sex of a newborn child depends on the father and not the mother." Justify this statement with the help of a flow diagram.

2

2

24. (a) Find the magnification of the image formed by a spherical mirror from the following data:

u = -20 cm, f = -15 cm.

 \mathbf{OR}

(b) Draw a labelled ray diagram for the image formation by a concave mirror when an object is placed between its centre of curvature and focus.

2

25. What will happen if an electric oven of rating 3 kW; 220 V is operated in a domestic electric circuit (220 V) that has a current rating of 10 A? Give reason to justify your answer.

2

26. (a) State any one advantage of using cloth bags over plastic bags.

(b) List any two methods by which the solid wastes generated in urban areas can be safely disposed off.

2

SECTION C

27. What is photosynthesis? Name the organelle and the organs in which photosynthesis takes place. Where does the oxygen liberated come from during this process? What happens to the carbohydrates which are not immediately used by the plant?

3

- 28. (a) An organic compound 'X' when reacts with sodium liberates hydrogen. The same compound 'X' when heated at 443 K in the presence of concentrated sulphuric acid gives an unsaturated hydrocarbon.
 - (i) Identify 'X'.
 - (ii) Write the chemical equations for the above mentioned reactions and state the role of concentrated sulphuric acid in the second reaction.

3

OR

31/C/1

→ 15 **→**

P.T.O.

- कार्बन के यौगिक अतिशय रूप से स्थायी क्यों होते हैं ? (ख) (i) संतृप्त और असंतृप्त यौगिकों के बीच विभेदन कीजिए । दोनों प्रकार के ऐसे (ii) यौगिकों की संरचना खींचिए जिनके अणु में कार्बन परमाणुओं की संख्या तीन हो । 3 मानव श्वसन तंत्र में कूपिकाओं की संरचना और कार्य का उल्लेख कीजिए। (क) फुफ्फुस में वायु के अवशिष्ट आयतन से क्या तात्पर्य है? (碅) 3 पादपों द्वारा कार्बन डाइऑक्साइड प्राप्त करने के किन्हीं दो ढंगों का उल्लेख कीजिए । रंध्रों के खुलने और बन्द होने का कारण लिखिए। 3 टिण्डल प्रभाव किसे कहते हैं ? ऐसे दो उदाहरण दीजिए जिनमें इस प्रभाव का प्रेक्षण किया जाता है । इस परिघटना की व्याख्या के लिए कारण दीजिए । 3 किसी परिनालिका और वृत्ताकार कुण्डली के बीच विभेदन कीजिए। (क) (i) व्याख्या कीजिए कि किसी विद्यालय की प्रयोगशाला में किसी परिनालिका को (ii) किस प्रकार बनाया जा सकता है। किसी धारावाही परिनालिका के भीतर उत्पन्न प्रबल चुम्बकीय क्षेत्र का कोई (iii) एक उपयोग लिखिए। 3 अथवा नामांकित परिपथ आरेख की सहायता से किसी धारावाही सीधे चालक के चारों ओर (ख) उत्पन्न चुम्बकीय क्षेत्र की चुम्बकीय क्षेत्र रेखाओं का पैटर्न दर्शाइए । व्याख्या कीजिए कि हम किस प्रकार दक्षिण हस्त अंगुष्ठ नियम की सहायता से किसी विद्युत-धारा के कारण उत्पन्न चुम्बकीय क्षेत्र की दिशा अंकित कर सकते हैं। 3
- पोषी स्तर की परिभाषा लिखिए । किसी आहार शृंखला में हमें (i) द्वितीयक और (ii) तृतीयक 33. उपभोक्ता किस पोषी स्तर पर मिलते हैं ? क्या होगा यदि किसी पोषी स्तर के सभी जीवों की मृत्यु हो जाए ? अपने उत्तर की कारण सहित पुष्टि कीजिए ।

◆ 16 ◆

3

31/C/1

29.

30.

31.

32.

Why are carbon compounds exceptionally stable? (b) (i) Differentiate (ii) between saturated and unsaturated compounds. Give structures of both the types of compounds having three carbon atoms in their molecules. 3 Give the structure and function of alveoli in human respiratory (a) system. (b) What is meant by residual volume of air in the lungs? 3 Write any two ways by which plants obtain carbon dioxide. What causes the opening and closing of the stomata? 3 What is Tyndall effect? Give two examples where this phenomenon is observed. Give reason to explain this phenomenon. 3 (a) (i) Differentiate between a solenoid and a circular coil. (ii) Explain how a solenoid can be made in a school laboratory. (iii) Write one use of the strong magnetic field produced inside a current carrying solenoid. 3 OR (b) With the help of a labelled circuit diagram, illustrate the pattern of the magnetic field lines of the magnetic field produced around a straight current carrying conductor. Explain how, with the help of right-hand thumb rule, we can determine and mark the direction of magnetic field lines due to a current. 3 Define trophic levels. At which trophic level do we find (i) secondary and (ii) tertiary consumers in a food chain? What will happen if all the 3 organisms of a trophic level die? Give reasons to justify your answer.

→ 17 →

P.T.O.

29.

30.

31.

32.

33.

31/C/1

खण्ड घ

- कोई जलीय विलयन नीले लिटमस को लाल कर देता है । नीचे दिए गए (क) 34. (i) किस विलयन का आधिक्य मिलाने पर यह परिवर्तन उत्क्रमित हो जाएगा ?
 - नींबू का रस (1)
 - मैग्नीशियम हाइड्रॉक्साइड (2)
 - सिरका (3)
 - कैल्सियम सल्फेट (4)
 - नीचे दिए गए यौगिक/यौगिकों में से कौन-सा/से फीनॉल्फथेलिन के विलयन (ii) को गुलाबी करेगा/करेंगे ?
 - CH_3COOH (1)
 - $Ca(OH)_2$ (2)
 - HC1 (3)
 - NaOH (4)
 - उस गैस का नाम लिखिए जिसका विलयन क्षारकीय होता है । इस विलयन (iii) का नाम/सूत्र लिखिए।
 - मधुमक्खी के डंक का उपचार करने के लिए क्षारकीय विलयन का उपयोग (iv) किया जाता है। क्यों?
 - (1) टमाटर और (2) इमली में पाए जाने वाले अम्ल का नाम लिखिए। (v)

अथवा

- क्रिस्टलन जल की परिभाषा लिखिए। (碅) (i)
 - किसी ऐसे यौगिक का रासायनिक नाम और उसका सूत्र लिखिए जिसके अणु (ii) में किस्टलन जल उपस्थित होता है और नीला प्रतीत होता है।
 - विरंजक चूर्ण का रासायनिक सूत्र लिखिए । इसके निर्माण में होने वाली (iii) अभिक्रिया का संतुलित रासायनिक समीकरण लिखिए । इसके तीन उपयोगों की सूची बनाइए।

31/C/1 **→ 18 →**

5

- (i) An aqueous solution turns blue litmus red. Which of the 34. (a) following solutions when added in excess would reverse the change?
 - (1) Lemon juice
 - (2)Magnesium hydroxide
 - (3)Vinegar
 - Calcium sulphate (4)
 - Out of the following, which compound/compounds will turn (ii) the phenolphthalein solution pink?
 - CH_3COOH (1)
 - Ca(OH)₂ (2)
 - (3)**HCl**
 - (4)NaOH
 - Name a gas whose aqueous solution is basic. Write the (iii) formula/name of this solution.
 - (iv)A basic substance is used to treat a honey-bee sting. Why?
 - Name the acid which is present in (1) Tomato and (\mathbf{v}) (2) Tamarind.

OR

- (b) (i) Define water of crystallisation.
 - (ii) Write the chemical name and formula of a compound having water of crystallisation in its molecule and appears blue.
 - (iii) Write the chemical formula of bleaching powder. Write a balanced chemical equation of the reaction involved in its preparation. List its three uses.

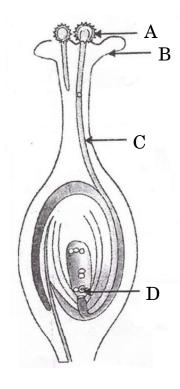
→ 19 →

P.T.O.

5

5

31/C/1



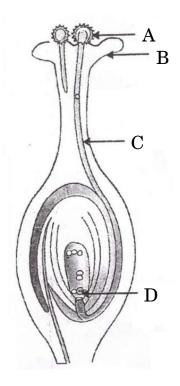
- **35.** (क) (i) मानव मादा जनन तंत्र के उस अंग का नाम लिखिए जहाँ निम्नलिखित कार्य का सम्पादन होता है :
 - (1) अण्डों की परिपक्वता
 - (2) अण्ड और शुक्राणु का संलयन (निषेचन)
 - (3) युग्मनज का रोपण
 - (ii) क्या होता है जब
 - (1) अण्ड का निषेचन होता है ?
 - (2) अण्ड का निषेचन नहीं होता है ?

3+2=5

अथवा

- (ख) (i) प्रत्येक का एक-एक उदाहरण देकर व्याख्या कीजिए :
 - (1) एकलिंगी पुष्प
 - (2) उभयलिंगी पुष्प
 - (ii) दिए गए आरेख में अंकित भागों A, B, C और D का नाम लिखिए।

(iii) "निषेचन के बिना परागण हो सकता है परन्तु परागण के बिना निषेचन नहीं हो सकता है।" इस कथन की कारण सहित पुष्टि कीजिए।



- **35.** (a) (i) Name the parts in the human female reproductive system where the following functions take place :
 - (1) Maturation of eggs
 - (2) Fusion of the egg and the sperm
 - (3) Implantation of the zygote
 - (ii) What happens to the egg
 - (1) when it is fertilised?
 - (2) when it is not fertilised?

3+2=5

OR

- (b) (i) Explain by giving one example each :
 - (1) Unisexual flowers
 - (2) Bisexual flowers
 - (ii) Name the labelled parts A, B, C and D in the diagram given below.

(iii) "Pollination may occur without fertilisation but fertilisation will not take place without pollination." Give reason to justify this statement.

5

31/C/1

→ 21 →

P.T.O.

- **36.** (क) विद्युत ऊर्जा के व्यापारिक मात्रक को व्यवहार में 'यूनिट' कहते हैं । इसका वास्तिवक नाम लिखिए और इस मात्रक और ऊर्जा के SI मात्रक के बीच संबंध स्थापित कीजिए ।
 - (ख) किसी विद्युत परिपथ का धारा अनुमतांक 1·0 A है। शक्ति अनुमतांक 8 W; 220 V के कितने LED लैम्प एक ही साथ इस परिपथ में निरापद रूप से उपयोग किए जा सकते हैं?

खण्ड ङ

निम्नलिखित प्रश्न स्रोत-आधारित/केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पिढ़ए और दिए गए प्रश्नों के उत्तर दीजिए।

- 37. कुतुब मीनार के प्रांगण में स्थित लौह स्तम्भ का निर्माण 1600 वर्ष पूर्व हुआ था। आज भी वह अक्षत अपने स्थान पर खड़ा है और उस पर जंग का कोई चिह्न नहीं है। यह दर्शाता है उस समय के प्राचीन भारत के धातु विज्ञानियों ने धातुकर्मीय प्रक्रमों को पूर्ण रूप से विकसित करने के साथ-साथ विभिन्न धातुओं को सुरक्षित रखने की तकनीक भी विकसित कर ली थी। धातु को सुरक्षित रखने के कार्य कई प्रक्रमों जैसे अन्य धातुओं की पतली परत चढ़ाना (लेपन), मिश्रातु बनाना, आदि द्वारा किए जाते थे।
 - (क) धातुओं की सक्रियता श्रेणी में आयरन कहाँ स्थित है ? यह प्रकृति में किस/किन रूप/रूपों में पाया जाता है ?
 - (ख) भर्जन और निस्तापन के बीच विभेदन कीजिए।
 - (η) धातुओं को जंग लगने/संक्षारण से बचाने की किन्हीं दो विधियों की व्याख्या कीजिए । 2

अथवा

(ग) रेल की पटरी और लोहे के मशीनी पुर्जों की दरारों को जोड़ने के लिए ऐलुमिनियम का उपयोग क्यों किया जाता है ? होने वाली अभिक्रिया का संतुलित रासायनिक समीकरण लिखिए।

5

1

1

- 36. (a) The commercial unit of electric energy is commonly known as 'unit'. Write its actual name and establish the relationship between this unit and the SI unit of energy.
 - (b) The current rating of a circuit is 1.0 A. How many LED lamps of power rating 8 W; 220 V can safely be used simultaneously in this circuit?

SECTION E

The following questions are source-based/case-based questions. Read the case carefully and answer the questions that follow.

- 37. The iron pillar in Qutab Minar complex in Delhi was built 1600 years ago. It is still standing intact and shows no signs of rusting even today. This shows that the ancient metallurgists of India in those times had fully developed metallurgical processes as well as the techniques of protection of different metals. The protection of metals, was done by several processes like coating of a thin film of another metal, alloying etc.
 - (a) Where is iron placed in the reactivity series of metals? Write the form/forms in which its ores are found in nature.
 - (b) Differentiate between roasting and calcination.
 - **(c)** Explain any two methods that are employed to rusting/corrosion of metals.

OR

(c) Why is aluminium used to join railway tracks or the cracked machine parts of 'iron'? Write a balanced chemical equation for the reaction which occurs.

P.T.O. 31/C/1 ***** 23 *****

5

1

1

2

- जन्तुओं में नियंत्रण और समन्वय का कार्य तंत्रिका और पेशीय ऊतकों द्वारा किया जाता है। 38. तंत्रिका ऊतक तंत्रिका कोशिकाओं अथवा न्यूरॉनों के एक संगठित जाल का बना होता है। मानवों में सोचना एक जटिल प्रक्रिया है जिसमें अधिक जटिल क्रियाविधि और तंत्रिक संबंधन सम्मिलित होते हैं । ये मस्तिष्क में संकेंद्रित होते हैं जो मानव शरीर का मुख्य समन्वय केन्द्र है। मस्तिष्क तथा मेरुरज्ज् केन्द्रीय तंत्रिका तंत्र का निर्माण करते हैं जो शरीर के सभी भागों से सूचनाएँ प्राप्त करते हैं और उसका समाकलन करते हैं।
 - आघातों और चोटों से मस्तिष्क की सुरक्षा किस प्रकार होती है ? (क)
 - प्रतिवर्ती चाप में (i) संवेदी न्यूरॉन (तंत्रिकोशिका) और (ii) प्रेरक तंत्रिकोशिका के (ख) मुख्य कार्य लिखिए।
 - (i) पेंसिल को उठाना और (ii) उल्टी (वमन) करने में मानव मस्तिष्क का कौन-सा (**ग**) भाग सम्मिलित होता है ? उल्लेख कीजिए कि यह क्रियाएँ ऐच्छिक हैं अथवा अनैच्छिक ।

अथवा

- केन्द्रीय तंत्रिका तंत्र विभिन्न क्रियाकलापों के लिए किस प्रकार शरीर के अन्य भागों में (**ग**) संचार भेजता है ? इस तंत्र के दो अवयवों के नाम लिखिए ।
- जब किसी माध्यम में गतिमान कोई प्रकाश किरण किसी अन्य माध्यम में तिर्यकत: प्रवेश 39. करती है, तो वह अपने मार्ग से झुक जाती है । इस परिघटना को प्रकाश का अपवर्तन कहते हैं । किसी माध्यम की प्रकाश को अपवर्तित करने की क्षमता को उसके प्रकाशिक घनत्व द्वारा भी व्यक्त किया जा सकता है । प्रकाशिक घनत्व द्रव्यमान घनत्व के समान नहीं है । हम 'विरल माध्यम' और 'सघन माध्यम' पदों (शब्दों) का प्रयोग करते हैं जिनका वास्तव में अर्थ क्रमश: "प्रकाशिक विरल माध्यम" और "प्रकाशिक सघन माध्यम" है । जब हम यह कहते हैं कि माध्यम A, माध्यम B की तुलना में प्रकाशिक सघन है, तो इसका अभिप्राय यह होता है कि माध्यम A का अपवर्तनांक माध्यम B के अपवर्तनांक से अधिक है। विरल माध्यम में प्रकाश की चाल सघन माध्यम में प्रकाश की चाल से अधिक होती है । इस प्रकार विरल माध्यम से सघन माध्यम में गमन करने वाले प्रकाश की किरण की चाल धीमी हो जाती है और वह अभिलम्ब की ओर झुक जाती है।

CLICK HERE

***** 24 *****

1

1

2

- 38. In animals the control and coordination is provided by nervous and muscular tissues. Nervous tissue is made of an organized network of nerve cells or neurons. In human beings, thinking is a complex activity which involves more complex mechanisms and neural connections. These are concentrated in the brain which is the main coordinating centre of the human body. The brain and spinal cord constitute the Central Nervous System which receives information from all parts of the body and integrates it.
 - (a) How is the brain protected from shocks and injuries?

(b) Write the main functions of (i) sensory neuron and (ii) motor neuron in a reflex arc.

(c) Which part of the brain is involved in activities like (i) picking a pencil and (ii) vomiting? State whether these actions are voluntary or involuntary.

OR

- (c) How does the central nervous system communicate with other parts of the body to carry out various activities? Name two components of this system.
- When a ray of light moving in a medium enters obliquely into another medium, it bends from its path. This phenomenon is called refraction of light. The ability of a medium to refract light is also expressed in terms of optical density. It is not the same as mass density. We use the terms 'rarer medium' and 'denser medium' which actually means 'optically rarer medium' and 'optically denser medium' respectively. When we say that a medium 'A' is optically denser than the other medium 'B', we mean that the refractive index of medium A is more than the refractive index of medium 'B'. The speed of light is higher in a rarer medium than a denser medium. Thus a ray of light travelling from a rarer medium to a denser medium slows down and bends towards the normal.

31/C/1

→ 25 **→**

P.T.O.

1

1

2

(क) किसी माध्यम के निरपेक्ष अपवर्तनांक की परिभाषा लिखिए।

1

1

2

- (ख) जल और काँच के निरपेक्ष अपवर्तनांक क्रमश: $\frac{4}{3}$ और $\frac{3}{2}$ हैं ।
 - (i) इन दोनों माध्यमों में से किसमें प्रकाश की चाल अधिक है ?
 - (ii) यदि प्रकाश की कोई किरण तिर्यकत: काँच से जल में प्रवेश करती है, तो क्या यह अभिलम्ब की ओर मुड़ेगी अथवा अभिलम्ब से दूर की ओर मुड़ेगी ?
- (ग) जल और काँच के निरपेक्ष अपवर्तनांक क्रमशः $\frac{4}{3}$ और $\frac{3}{2}$ हैं । यदि काँच में प्रकाश की चाल 2×10^8 m/s है, तो (i) जल और (ii) निर्वात में प्रकाश की चाल ज्ञात कीजिए ।

अथवा

(ग) "किसी भी माध्यम में डूबे किसी आयताकार काँच के स्लैब पर आपितत कोई प्रकाश किरण स्वयं के समान्तर निर्गत होती है।" इस कथन की पुष्टि के लिए नामांकित किरण आरेख खींचिए।

2

(a) Define the term absolute refractive index of a medium.

1

- (b) Absolute refractive indices of water and glass are $\frac{4}{3}$ and $\frac{3}{2}$ respectively.
 - (i) In which one of the two media is the speed of light more?
 - (ii) If a ray of light enters obliquely from glass to water, will it bend towards the normal or away from the normal?

1

(c) The absolute refractive indices of water and glass are $\frac{4}{3}$ and $\frac{3}{2}$ respectively. If the speed of light in glass is 2×10^8 m/s, find the speed of light in (i) water and (ii) vacuum.

2

OR

(c) "A ray of light incident on a rectangular glass slab immersed in any medium emerges parallel to itself." Draw a labelled ray diagram to justify this statement.

2

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)

Secondary School Supplementary Examination, July- 2023

SUBJECT NAME: SCIENCE SUBJECT CODE: 086 PAPER CODE: 31/C/1

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note

	"Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be
	penalized only once.
11	A full scale of marks80(example 0 to 80/70/60/50/40/30 marks as
	given in Question Paper) has to be used. Please do not hesitate to award full
	marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e.,
	8 hours every day and evaluate 20 answer books per day in main subjects and
	25 answer books per day in other subjects (Details are given in Spot
13	Guidelines).
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Giving more marks for an answer than assigned to
	it.
	Wrong totaling of marks awarded on an answer.
	Wrong transfer of marks from the inside pages of the answer book to the
	title page.
	Wrong question wise totaling on the title page.
	Leaving answer or part thereof unassessed in an answer book.
	Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	Marks in words and figures not tallying/not same.
	Wrong transfer of marks from the answer book to online award list.
	Answers marked as correct, but marks not awarded. (Ensure that the right
	tick mark is correctly and clearly indicated. It should merely be a line. Same
	 is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks
	awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect,
	it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling
	error detected by the candidate shall damage the prestige of all the personnel
	engaged in the evaluation work as also of the Board. Hence, in order to uphold
	the prestige of all concerned, it is again reiterated that the instructions be
	followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the
17	"Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request
.	on payment of the prescribed processing fee. All Examiners/Additional Head
	Examiners/Head Examiners are once again reminded that they must ensure that
	evaluation is carried out strictly as per value points for each answer as given in
	the Marking Scheme.

MARKING SCHEME

Secondary School Supplementary Examination, July - 2023 SCIENCE (Subject Code–086)

[Paper Code: 31/C/1]

Maximum Marks: 80

	T-TWARM	lum Marks : 80	
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION—A		
1	(d)	1	1
2	(a) / (c)	1	1
3	(c)	1	1
4	(b)	1	1
5	(c)	1	1
6	(b)	1	1
7	(c)	1	1
8	(d)	1	1
9	(c)	1	1
10	(d)	1	1
11	(a)	1	1
12	(a)	1	1
13	(d)	1	1
14	(a)	1	1
15	(c)	1	1
16	(a)	1	1
17	(d)	1	1
18	(b)	1	1
19	(c)	1	1
20	(d)	1	1
	SECTION—B		
21	(a) A = Potassium / K or Sodium /Na B = Calcium / Ca or Magnesium / Mg C = Aluminium / Al or Iron / Fe or Zinc / Zn		
	D = Lead / Pb or Copper / Cu or Silver / Ag or Gold / Au	½ ×4	

	OR		
	(b) (i) (1) Sodium chloride -yellow	1/2	
	(2) Calcium chloride – brick red	1/2	
	(credit full marks for any other colour)		
	(ii) No	1/2	
	Justification: Because they are ionic or electrovalent compounds which are insoluble in organic solvents	1/2	2
22	Prostate gland, and seminal vesicles	1/2, 1/2	
	• 1) It provides nutrition to the sperms.	1/2	
	2) It makes the transport of sperms easier through the fluid medium.	1/2	2
23	MOTHER FATHER		
	PARENTS XX XY		
	\$200 (\$4.00 (\$1.		
	GAMETES X X, Y		
	ZYGOTE XX XY		
	OFFSPRINGS Girl Boy		
	Diagram	1	
	Labelling	1	
	(Award 1 mark if explained through words only)		2
24	$(a) \qquad \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	
	$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$		
	$=\frac{1}{-15}-\frac{1}{-20}=\frac{-1}{60}$		
	v = -60 cm	1/2	
	$m = \frac{-v}{u}$	1/2	
	$=-\frac{-60}{-20}=-3$	1/2	
	-20 OR	_	
	(b)		
	A		
	B' F P		
	C B		
	K.		
	Diagram	1½	
	Diagram Direction of the rays	1/2	2
	Direction of the rays	/2	

X_086_31/C/1_Science # Page- 4

2.5	01	1, /1 1	1	
25	Short circuiting / fuse will blow or n	nelt / break in circuit. (any one)	1	
	Justification:			
	$I = \frac{P}{V} = \frac{3000 \text{ W}}{220 \text{ V}} = 13.6 \text{ A}$			
		and the oven draws a current of 13.6 A,	1	,
	which is more than the current rating	g. Hence the oven will stop working.	1	2
26	(a) Cloth bag is biodegradable / eco-	friendly.	1	
	(b) i. segregation of biodegradable a	nd non-biodegradable waste at source.		
	ii. By composting			
	iii. Recycling of solid wastes		1/2+1/2	
		(any two)		
		(any other suitable way)		2
	SE	CCTION—C		
27	- Th	internal and a factor of the state of the st		
		totrophs take in substances from outside orm of energy. / The process in which		
		into carbohydrates in the presence of		
	sunlight and chlorophyll. /	and current arms in the presence of		
	<u> </u>			
	6CO ₂ +12H ₂ O Chlo Su	$ \begin{array}{c} \text{rophyll} \rightarrow C_6 H_{12} O_6 + 6 O_2 + 6 H_2 O \\ \text{(Glucose)} \end{array} $	1	
	Chloroplast		1/2	
	• leaves / green part of the plant.		1/2	
	• water		1/2	
	stored as starch		1/2	3
28	(a)			
	(i) 'X' is Ethanol / C ₂ H ₅ OH		1	
	(ii)			
	2C₃H₅OH + 2Na −	\longrightarrow 2C ₂ H ₅ O ⁻ Na ⁺ + H ₂	1	
	$C_2H_5OH \xrightarrow{H_2SO_4(conc)}$		1/2	
	(Do not			
	Sulphuric acid acts as a dehyd	1/2		
	(b) (i) due to the formation of strong	OR covalent bonds.	1	
	(ii)			
	Saturated compounds	Unsaturated compounds		
	Compounds containing	_		
	1	Compounds containing carbon-	1	

		1 .	
	carbon- carbon single bonds. carbon double or triple bonds.	1	
	(Any other difference)		
	Structure of saturated compound		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	Structure of unsaturated compound		
	$H - C - C = C$ $H - C - C \equiv C - H$ $H - C - $	1/2	3
29	(a) Within the lungs when the air passage divides into smaller and smaller tubes which finally terminate into balloon- like structures.	1 1	
	these are called alveoli.		
	Function – It provides a surface where the exchange of gases takes place.	1	
	(b) It is the volume of air left in the lungs after exhalation.	1	3
30	Exchange of gases through stomata.	1/2	
30	By the process of respiration.	1/2	
	25 the process of respitation.	/2	
	• The guard cells absorb water and swell causing the stomatal pore to open.	1	
	The guard cells lose water and shrink and hence the pore closes.	1	3
31	It is the phenomenon of scattering of light by the colloidal particles due to which the path of the light becomes visible. The product of the light becomes visible of the light becomes visible of the light becomes visible.	1	
	Examples:1. When sunlight passes through a canopy of dense forest.	1/2	
	2. A fine beam of sunlight enters a smoke/ dust filled dark room		
	through a small hole.Explanation: When a beam of light passes through a heterogenous		
	mixture of minute particles (dust, smoke etc) it is reflected diffusely by the particles and gets scattered. This scattering of light makes the beam of light visible.		3

32	(a)		
	(i) Solenoid: A coil of many turns of insulated copper wire wrapped closely in the shape of cylinder.	1	
	Circular coil: Straight wire bent in the form of circular loop with many		
	turns.		
	(ii) By taking a non-conducting cylindrical tube and winding a long, insulated copper wire tightly over it in the shape of a spring such that the turns are closely placed and lie side by side.	1	
	(iii) To magnetise a piece of magnetic material like soft iron /	1	
	To make an electromagnet (any one)		
	OR		
	(b)		
	Diagram	1	
	Labelling of magnetic field	1	
	(Please check the direction of magnetic field lines corresponding to the direction of current in the conductor.)	1	
	• Right hand Thumb Rule: Imagine that you are holding a current-carrying straight conductor in your right hand such that the thumb points towards the direction of current. Then your fingers will wrap around the conductor in the direction of the field lines of the magnetic field.	1	3
33	Trophic level – Various steps or levels in a food chain	1	
	(i) secondary consumer – third trophic level.	1/2	
	(ii) tertiary consumer – fourth trophic level.	1/2	
	1. Death of all organisms at one trophic level will lead to ecological imbalance / disrupt the food chain.	1/2	
	2. Organisms of the next level will starve to death / enter other food chain / organisms of the previous level will multiply profusely / (any other)	1/2	3
	SECTION—D		
34	(a)		
	(i) (2) Magnesium hydroxide	1	
	(ii) (2) Ca(OH) ₂ and (4) NaOH	1/2+ 1/2	
	(7)		

	(iii)		
	NH ₃ / Ammonia	1/2	
	NH ₄ OH / Ammonium hydroxide	1/2	
	(iv) To neutralize the effect of acid in the bee sting.	1	
	(v) (1) Oxalic acid (2) Tartaric acid	1/2+ 1/2	
	OR		
	(b)(i) It is the fixed number of water molecules present in one formula unit of salt.	1	
	(ii) Hydrated copper sulphate / Copper sulphate penta hydrate.	1/2	
	CuSO ₄ .5H ₂ O	1/2	
	(iii)		
	• CaOCl ₂	1/2	
	Chemical equation	1	
	• Uses − 1. For bleaching cotton and linen in textile industry.	1	
	2. As an oxidising agent in a chemical industry.		5
	3. For disinfecting water.	½ ×3	
	(or any other)		
35	(a)	1	
	(i) (1) Ovary	1	
	(2) Oviduct / Fallopian tube	1	
	(3) Lining of the uterus	_	
	(ii) (1) zygote is formed	1	
	(2) when egg is not fertilised, egg lives for about one day, the lining of the uterus slowly breaks down and comes out through vagina along with blood and mucous.	1	
	OR		
	(b) (i)		
	(1) Unisexual flower – contains either stamens or pistil.	1/2	
	eg: Papaya/ Water melon (any other)	1/2	
	(2) Bisexual flower – contains both stamens and pistil	1/2	
	eg: Hibiscus / mustard (any other)	1/2	
	(ii) A – Pollen Grain		
	B – Stigma		
	C – Pollen tube		
	D – Female germ-cell / egg cell	½ ×4	
	(iii) Transfer of pollen is required for fusion of gametes. /	/2 ^ -	
	Pollen needs to be transferred from the stamen to the stigma as it brings male germ-cell (Pollen) + female germ-cell (egg) together for fusion.	1	5

36	(a)		
50	• kilowatt hour or kWh	1	
	• 1 kWh = $1000W \times 3600$ seconds	1 1/ ₂	
I	$= 3.6 \times 10^6 \text{ watt seconds}$	/ 2	
	$1 \text{ kWh} = 3.6 \times 10^6 \text{ Joule}$	1	
	(b) $P = 8 \text{ W}$; $V = 220 \text{ V}$; Current rating = 1.0 A		
	Current through each lamp = $\frac{8 W}{220 V}$	1	
	Number of lamp = $\frac{current\ rating}{current\ through\ each\ lamp}$	1/2	
		, -	
	$=\frac{\frac{1.0A}{8W}}{\frac{8W}{220V}} = \frac{220}{8} = 27.75$		
		1	_
	So, 27 lamps can safely be used in the circuit.	1	5
	SECTION - E		
37	(a)	17	
	• Middle	1/ ₂ 1/ ₂	
	• Sulphides /Carbonates/Oxide (any one)	/2	
	(b)		
	Roasting Calcination		
	Ore is heated in Ore is heated in the absence excess of air. Ore is heated in the absence or limited supply of air.		
	This is used for sulphide ores. This is used for carbonate ores. (Any one difference)	1	
	(c)		
	• Galvanization – coating of iron object with a thin layer of zinc.	1	
	• Alloying – A mixture of two or more metals or a metal and a non-	1	
	metal. (or any other)		
	OR		
	(c) The reaction between aluminium and iron oxide is highly exothermic		
	which forms molten iron which is used in welding cracked machine	1	
	parts.		
	$\text{Fe}_2\text{O}_3(s) + 2\text{Al}(s) \rightarrow 2\text{Fe}(l) + \text{Al}_2\text{O}_3(s) + \text{Heat}$	1	4
38	(a) • Bony box / Cranium, fluid filled balloon	1/2, 1/2	
30	(b) •		
	i. Sensory neuron – pass information from receptors to spinal cord.	1/2	
	ii. Motor neuron – transmit information from spinal cord to effector	1/2	
	organ / muscle.		
	(c) (i) Cerebellum / Hind Brain – Voluntary Action	1/2+ 1/2	
	(ii) Medulla / Hind Brain - Involuntary Action	1/2+ 1/2	
1		I	l

	OR		
	(c) Through Peripheral nervous system	1	
	Cranial nerves, and Spinal nerves	1/2, 1/2	4
39	(a) The refractive index of a medium with respect to air or vacuum	1	
	/ Absolute refractive index of a medium = $\frac{\text{speed of light in air(vacuum)}}{\text{speed of light in medium}}$		
	(b) (i) speed of light is more in water	1/2	
	(ii) bends away from normal	1/2	
	(c) Absolute refractive index of a medium = $\frac{\text{speed of light in vacuum}}{\text{speed of light in medium}}$		
	$\frac{3}{2} = \frac{\text{speed of light in vacuum}}{2 \times 10^8}$	1/2	
	Speed of light in vacuum = 3×10^8 m/s	1/2	
	Speed of light in water = $\frac{3}{4} \times 3 \times 10^8 \text{ m/s} = \frac{9}{4} \times 10^8 \text{ m/s}$	1	
	OR		
	(c) Incident ray		
	Refracted		
	Diagram Emergent Labelling	1 1	4
